Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae

نویسندگان

  • Sandra A Allen
  • William Clark
  • J Michael McCaffery
  • Zhen Cai
  • Alison Lanctot
  • Patricia J Slininger
  • Z Lewis Liu
  • Steven W Gorsich
چکیده

BACKGROUND Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast. RESULTS We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM) that prevents growth. CONCLUSION These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress.

Development of the tolerance of Saccharomyces cerevisiae strains to furfural and 5-hydroxymethylfurfural (HMF) is an important issue for cellulosic ethanol production. Although furfural and HMF are known to induce oxidative stress, the underlying mechanisms are largely unknown. In this study, we show that both furfural and HMF act as thiol-reactive electrophiles, thus directly activating the Ya...

متن کامل

Impact of Reactive Oxygen Species on Spermatozoa: ABalancing Act between Beneficial and Detrimental Effects

Reactive oxygen species (ROS)plays an important role in sperm motility. The physiological generation at low concentration induces beneficial effects on sperm functions and plays a significant role in sperm metabolism. Meanwhile, the excessive generation of reactive oxygen species can overwhelm protective mechanism and triggers changes in lipid and protein layers of sperm plasma membrane, which ...

متن کامل

Applied Microbial and Cell Physiology

The yeast Saccharomyces cerevisiae is a useful model organism for studying lead (Pb) toxicity. Yeast cells of a laboratory S. cerevisiae strain (WT strain) were incubated with Pb concentrations up to 1,000 μmol/l for 3 h. Cells exposed to Pb lost proliferation capacity without damage to the cell membrane, and they accumulated intracellular superoxide anion (O2 ) and hydrogen peroxide (H2O2). Th...

متن کامل

Melatonin Reduces Oxidative Stress Damage Induced by Hydrogen Peroxide in Saccharomyces cerevisiae

Melatonin (N-acetyl-5-methoxytryptamine), which is synthesized from tryptophan, is formed during alcoholic fermentation, though its role in yeast is unknown. This study employed Saccharomyces cerevisiae as an eukaryote model to evaluate the possible effects of melatonin supplementation on endogenous cellular defense systems by measuring its effects on various cellular targets. Cell viability, i...

متن کامل

Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome

Adenovirus early region 4 open reading frame 4 (E4orf4) protein has been reported to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed mammalian cells. In this report, we show that E4orf4 induces an irreversible growth arrest in Saccharomyces cerevisiae at the G2/M phase of the cell cycle. Growth inhibition requires the presence of yeast PP2A-Cdc55, and is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010